TEST REPORT

REPORT NO.	TH40054/2011	
PAGE NO.	1 OF 20	
DATE:	May 04, 2011	

EVA-GLORY INDUSTRIAL CO., LTD.


NO. 33, HSIANG HO RD. LEE LIN VILLAGE, TAN TZU, TAICHUNG, TAIWAN, R.O.C.

The following merchandi	se was submitted and identified by the application	nt as:
Product Description:	TK-Pro	
Style/Item No.:	2522Q28-642PX	
Q'ty of Sample:	9 pieces	
Color of Sample:	Red (1/2 T) & Blue (1/2 T)	
Size of Sample:	102cm (L) x 102cm (W) x 2.5cm (T)	
Sample Received Date:	Apr. 13, 2011	
Test Period:	Apr. 14, 2011 ~ May 03, 2011	

We have tested the submitted sample(s) as requested and the following results were obtained:

- **Test Requested:** According to EN 1177:2008 Impact Attenuating playground surfacing Determination of critical fall height. (The evaluations of EN1176-1 clause 4 and 6 have been excluded.)
- <u>Test Methods:</u> According to EN 1177:2008 Impact Attenuating playground surfacing Determination of critical fall height.
- **Test Results:** Critical Fall Height: 0.8m (Testing in the laboratory follows to EN1177:2008)
- Note. According to EN 1177:2008, conducting impact tests on different positions after attached individual pieces of sample.

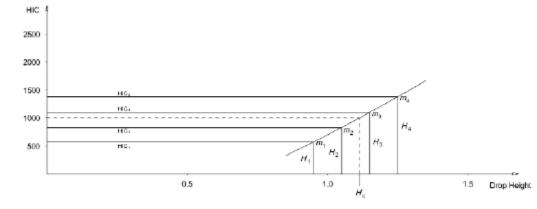
--- See Next Page ----

Signed for and on behalf of SGS Taiwan Ltd.

Laboratory address: No. 115, Youyuan N Rd., Lungjing Dist., Taichung City, Taiwan

Rex Su Supervisor

REPORT NO.	TH40054/2011	
PAGE NO.	2 OF 20	
DATE:	May 04, 2011	

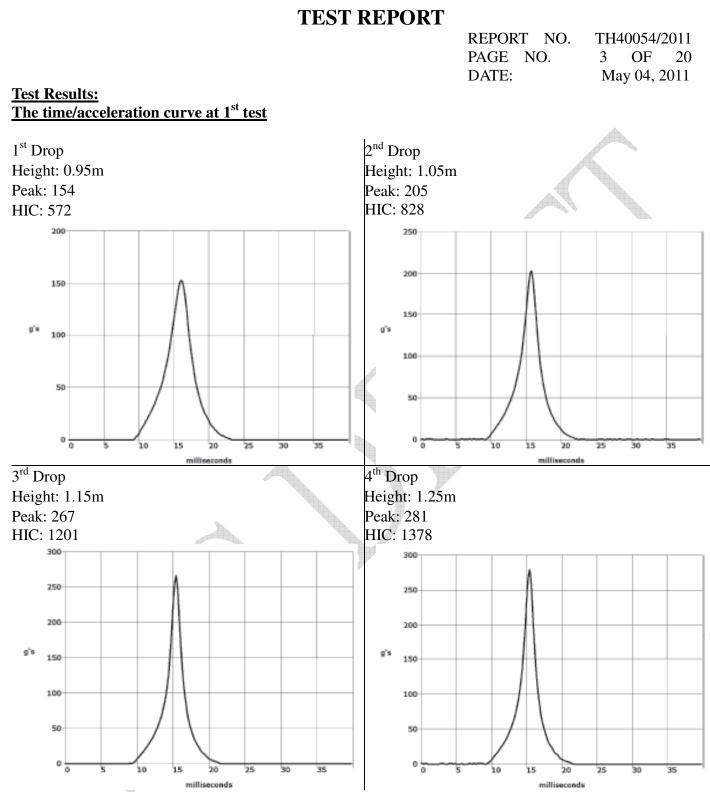

Test Results:

1 st test	Method of fixing: Take sample #2 and attached them with double-sided tapes on the edges of each sample, and place on a flat, rigid concrete floor.Position Description: In the centre of the blue surface of sample.		
Drop Test	Height (m)	HIC	Requirements
1 st	0.95	572	
2 nd	1.05	828	HIC ≤ 1000
3 rd	1.15	1201	\square $\Pi C \ge 1000$
4 th	1.25	1378	
Environmental Condition	Temp.: 23°C/R.H.: 61%		
Sample Condition	Dry		

Determination:

The Maximum height at Position A that meets HIC ≤ 1000 is 1.0m. (The results were rounded up to first decimal.)

The curve of HIC vs. drop height at 1st test



Key

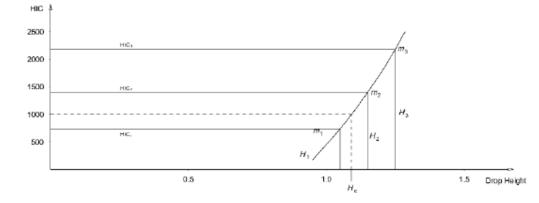
m impact measurements

H drop height H_C critical fall height

--- See Next Page ---

⁻⁻⁻ See Next Page ----

REPORT NO.	TH40054/2011	
PAGE NO.	4 OF 20	
DATE:	May 04, 2011	

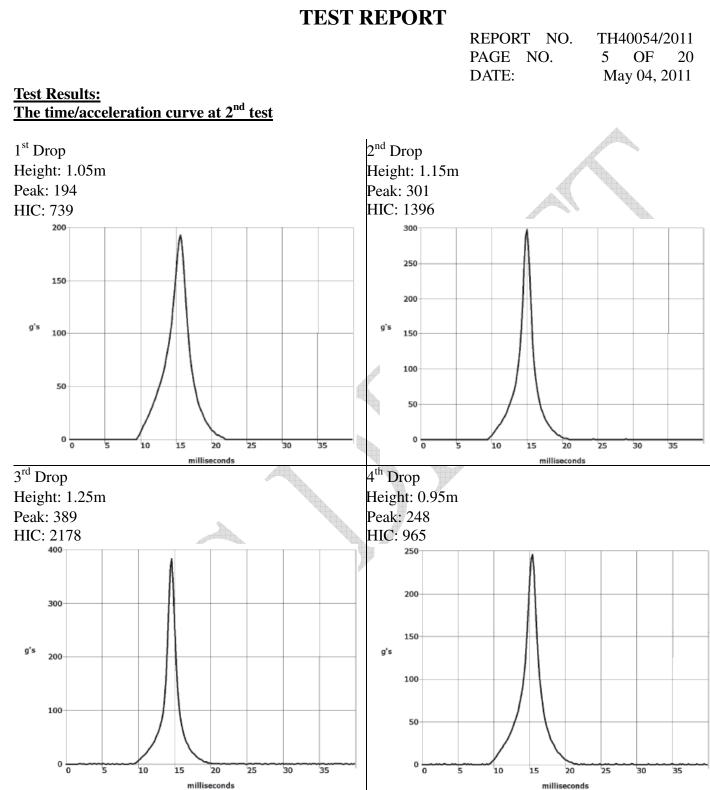

Test Results:

2 nd test	Method of fixing: Take sample #4 and attached them with double-sided tapes on the edges of each sample, and place on a flat, rigid concrete floor. Position Description: In the centre of the blue surface of sample.		STITURIZE
Drop Test	Height (m)	HIC	Requirements
1 st	1.05	739	
2^{nd}	1.15	1396	HIC ≤ 1000
3 rd	1.25	2178	$\operatorname{Hic} \ge 1000$
4 th	0.95	965	
Environmental Condition	diama.	Temp.: 20°C/R.H.:	65%

Determination:

The Maximum height at Position A that meets HIC ≤ 1000 is 1.0m. (The results were rounded up to first decimal.)

The curve of HIC vs. drop height at 2nd test



Key

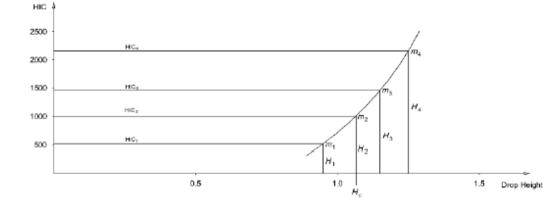
m impact measurements

H drop height H_c critical fall height

--- See Next Page ---

--- See Next Page ----

REPORT NO.	TH40054/2011
PAGE NO.	6 OF 20
DATE:	May 04, 2011

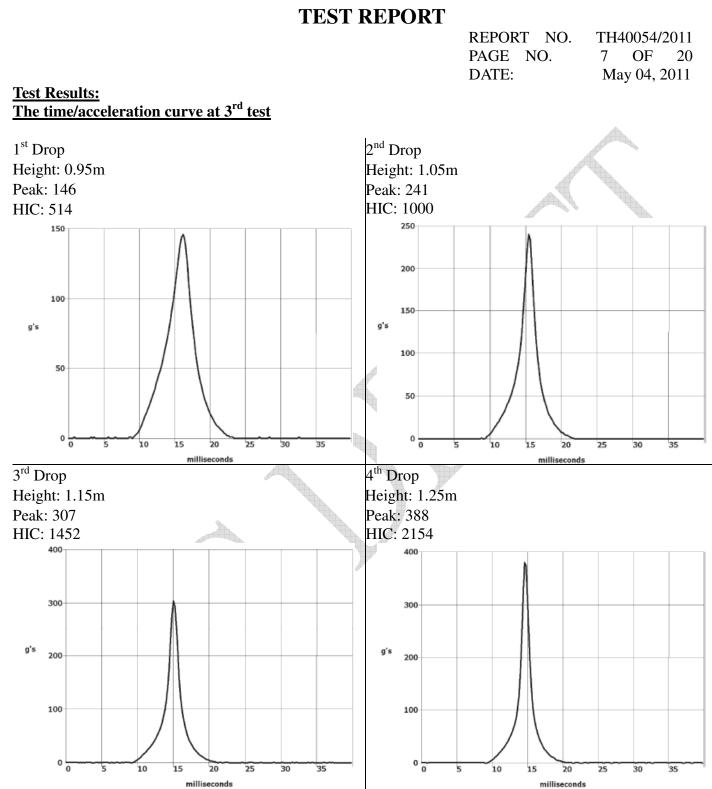

Test Results:

3 rd test	Method of fixing: Take sample #5 and attact double-sided tapes on the sample, and place on a flat floor. Position Description: In the centre of the red surf	e edge of each t, rigid concrete	ESTEV/M/2ET
Drop Test	Height (m)	HIC	Requirements
1 st	0.95	514	
2 nd	1.05	1000	HIC ≤ 1000
3 rd	1.15	1.15 1452	
4 th	1.25	2154]
Environmental Condition		Temp.: 19°C/R.H.: 70%	
Sample Condition		Dry	

Determination:

The Maximum height at Position A that meets HIC ≤ 1000 is 1.0m. (The results were rounded up to first decimal.)

The curve of HIC vs. drop height at 3rd test



Key

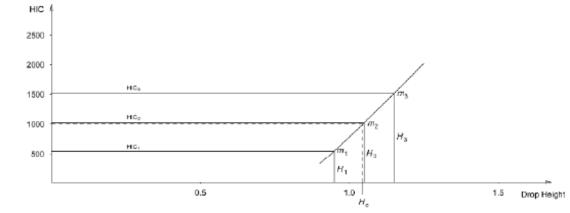
m impact measurements

H drop height H_c critical fall height

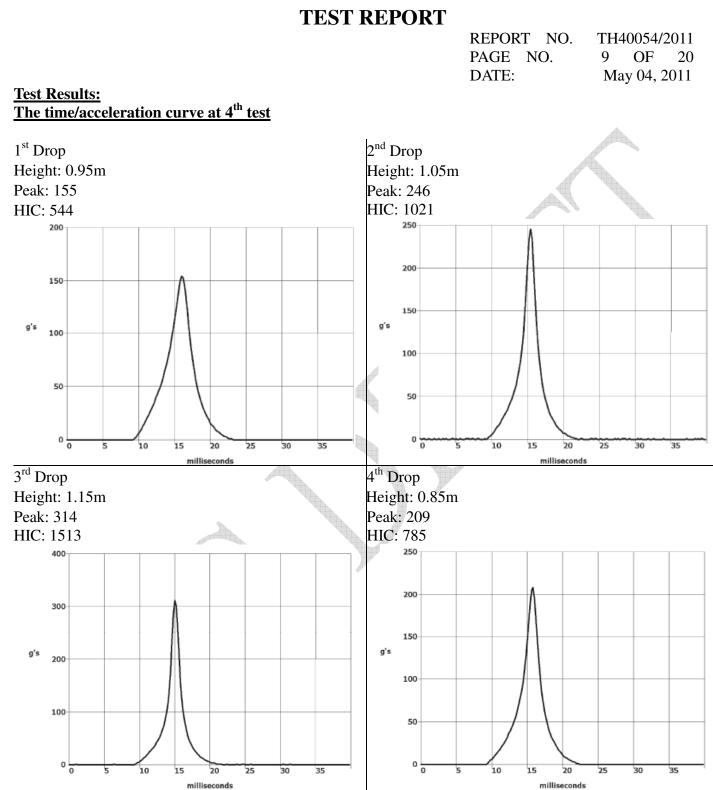
--- See Next Page ---

⁻⁻⁻ See Next Page ----

REPORT NO.	TH40054/2011	
PAGE NO.	8 OF 20	
DATE:	May 04, 2011	


Test Results:

4 th test	Method of fixing: Take sample #3 and #4, them with double-sided edges of each sample, and rigid concrete floor. Position Description: In the centre of a joint b #3(red surface) and #4(blu	tapes on the place on a flat, etween sample	ZUIL/BUZI	
Drop Test	Height (m)	HIC	Requirements	
1 st	0.95	544		
2^{nd}	1.05	1021	HIC ≤ 1000	
3 rd	1.15 1513		\neg	
4 th	0.85	785		
Environmental Condition	Temp.: 21°C/R.H.: 70%			
Sample Condition		Dry		


Determination:

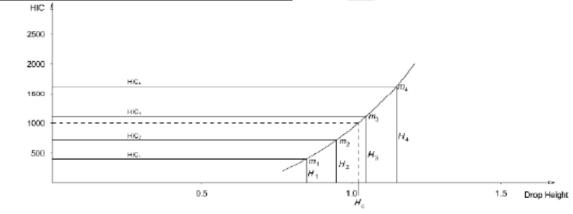
The Maximum height at Position A that meets HIC ≤ 1000 is 0.9m. (The results were rounded up to first decimal.)

The curve of HIC vs. drop height at 4th test

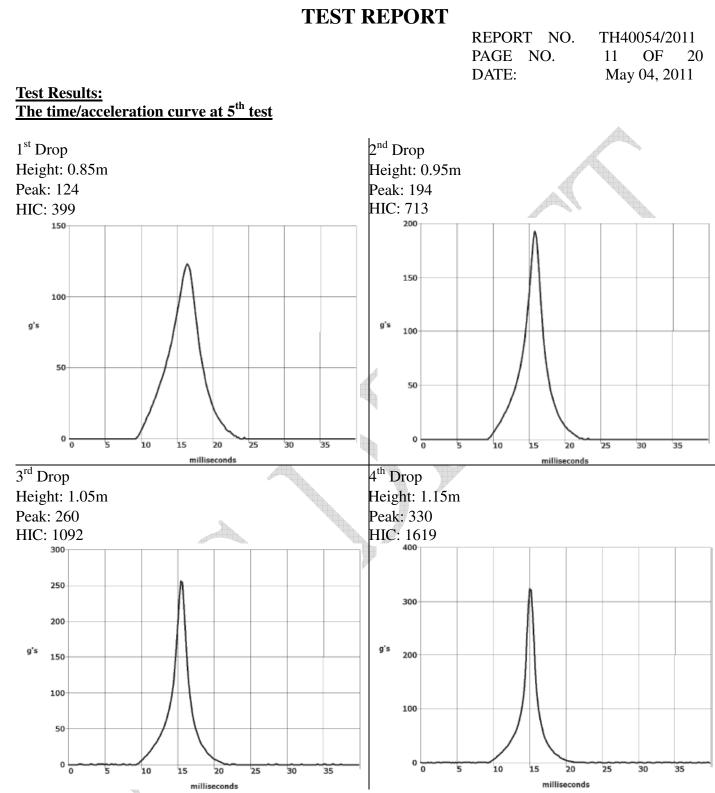
- m impact measurements
- H drop height
- H_C critical fall height
- --- See Next Page ---

--- See Next Page ----

REPORT	NO.	TH40054/2011		
PAGE N	О.	10	OF	20
DATE:		May	04, 20)11


Test Results:

5 th test	Method of fixing: Take sample #1 and #2, and attached them with double-sided tapes on the edges of each sample, and place on a flat, rigid concrete floor.Position Description: In the centre of a joint between sample #1(red surface) and #2(blue surface).		
Drop Test	Height (m)	HIC	Requirements
1 st	0.85	399	
2 nd	0.95	713	HIC ≤ 1000
3 rd	1.05	1092	$-$ HIC ≥ 1000
4 th	1.15	1619	
Environmental Condition		Temp.: 22°C/R.H.: 70%	2
Sample Condition		Dry	


Determination:

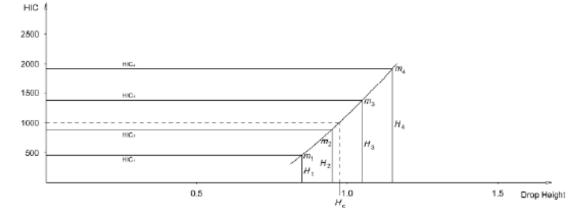
The Maximum height at Position A that meets HIC ≤ 1000 is 0.9m. (The results were rounded up to first decimal.)

The curve of HIC vs. drop height at 5th test

- m impact measurements
- drop height critical fall height н
- Hc
- --- See Next Page ---

--- See Next Page ----

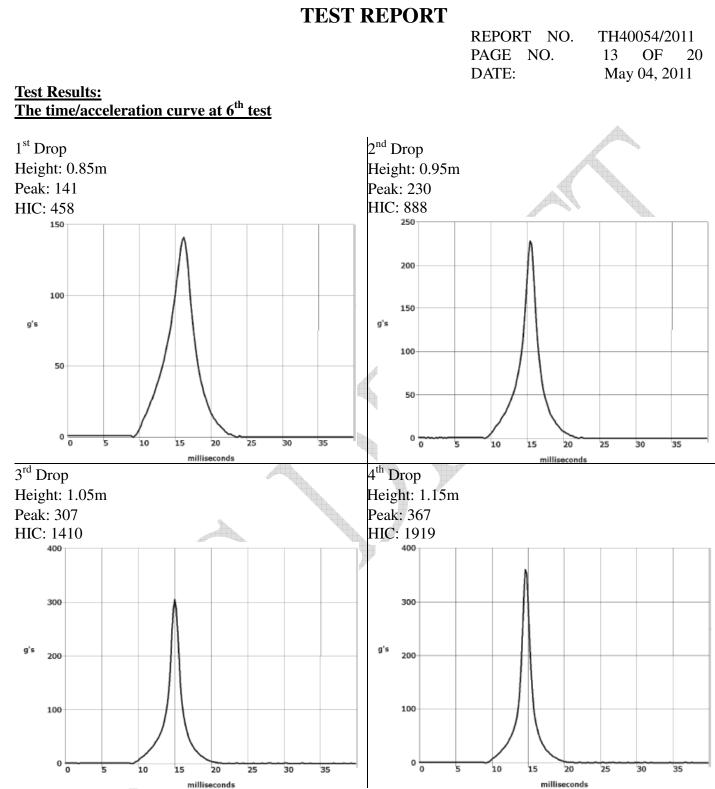
REPORT	NO.	TH40	0054/20)11
PAGE N	О.	12	OF	20
DATE:		May	/ 04, 20)11


Test Results:

6 th test	Method of fixing: Take sample #5 and #6, them with double-sided edges of each sample, and rigid concrete floor. Position Description: In the centre of a joint b #5(red surface) and #6(blu	tapes on the place on a flat, etween sample	
Drop Test	Height (m)	HIC	Requirements
1 st	0.85	458	
2 nd	0.95	888	HIC ≤ 1000
3 rd	1.05	1410	\neg $\Pi C \ge 1000$
4 th	1.15	1919	
Environmental Condition	Temp.: 24°C/R.H.: 70%		
Sample Condition		Dry	

Determination:

The Maximum height at Position A that meets HIC ≤ 1000 is 0.9m. (The results were rounded up to first decimal.)


The curve of HIC vs. drop height at 6th test

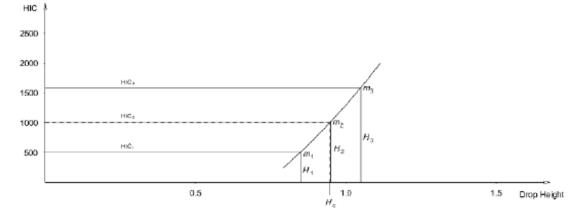
Key

- m impact measurements
- H drop height
- H_c critical fall height

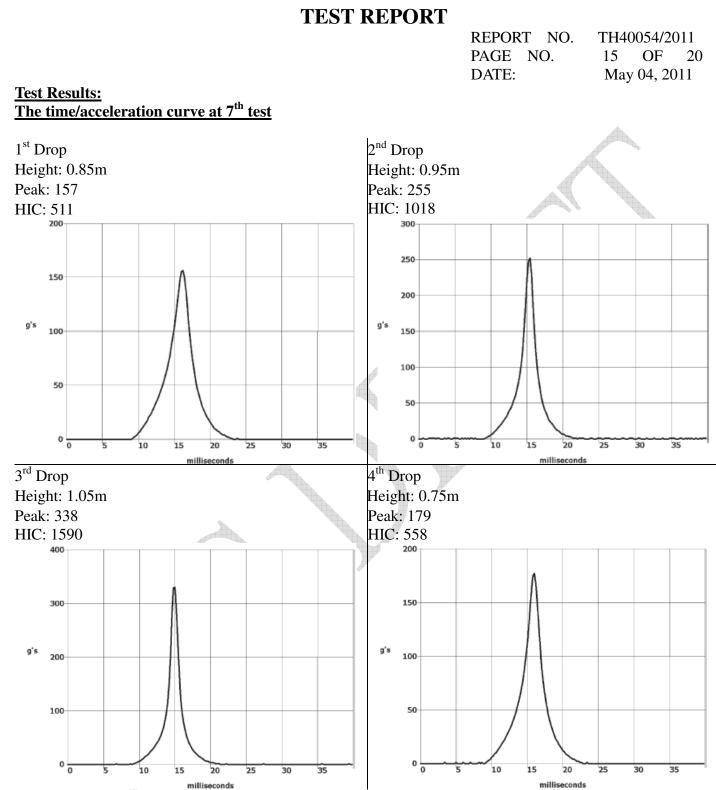
--- See Next Page ----

⁻⁻⁻ See Next Page ----

REPORT NO.		TH40054/2011		
PAGE N	O.	14	OF	20
DATE:		May	/ 04, 20)11


Test Results:

7 th test	Method of fixing: Take sample #1, #2, #3 attached them with double the edges of each sample, flat, rigid concrete floor. Position Description: At the cross-joint of s surface), #2(blue surface)	sample #1(red face), #3(red	
Drop Test	Height (m)	HIC	Requirements
1 st	0.85	511	
2 nd	0.95	1018	HIC < 1000
3 rd	1.05	1590	HIC ≤ 1000
4 th	0.75	558	
Environmental Condition	Temp.: 24°C/R.H.: 70%		
Sample Condition		Dry	


Determination:

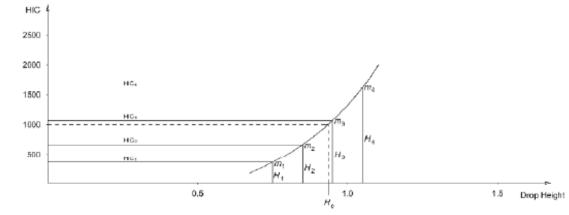
The Maximum height at Position A that meets HIC ≤ 1000 is 0.8m. (The results were rounded up to first decimal.)

The curve of HIC vs. drop height at 7th test

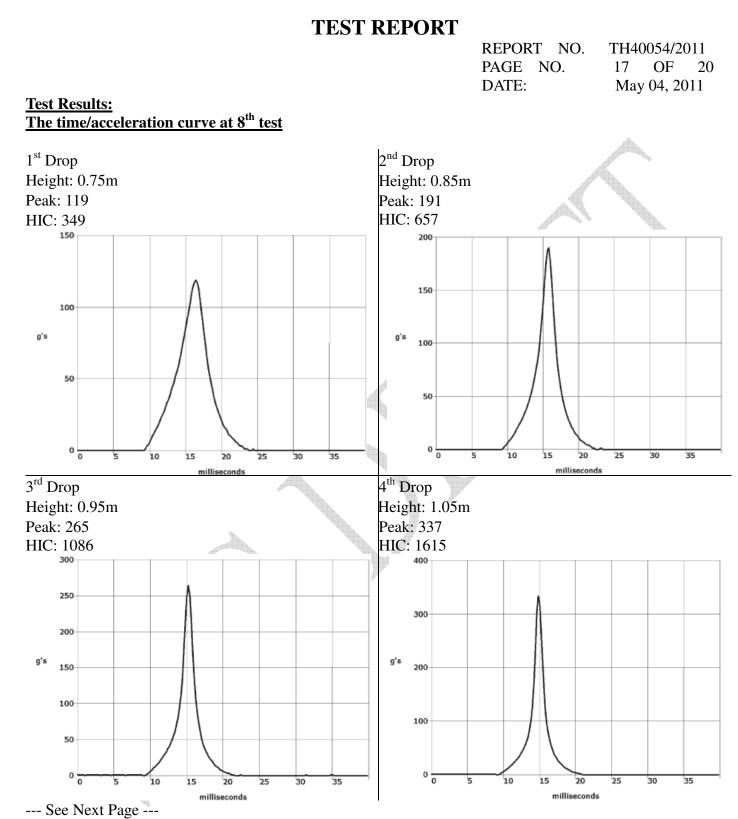
- impact measurements m
- drop height critical fall height н
- Нc
- --- See Next Page ---

--- See Next Page ----

REPORT	NO.	TH40	0054/20)11
PAGE N	О.	16	OF	20
DATE:		May	04,20)11


Test Results:

8 th test	Method of fixing: Take sample #5, #6, #7 attached them with double the edges of each sample, flat, rigid concrete floor. Position Description: At the cross-joint of s surface), #6(blue surface)	-sided tapes on and place on a sample #5(red ace), #7(blue	
Drop Test	Height (m)	HIC	Requirements
1 st	0.75	349	
2 nd	0.85	657	HIC ≤ 1000
3 rd	0.95	1086	$\operatorname{IIIC} \ge 1000$
4 th	1.05	1615	
Environmental Condition		Temp.: 24°C/R.H.: 74%	
Sample Condition		Dry	

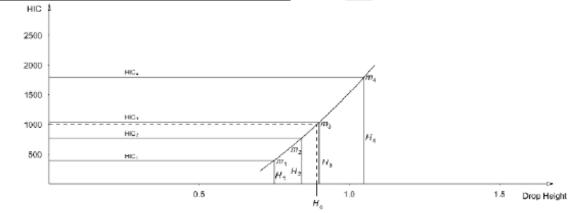

Determination:

The Maximum height at Position A that meets HIC ≤ 1000 is 0.8m. (The results were rounded up to first decimal.)

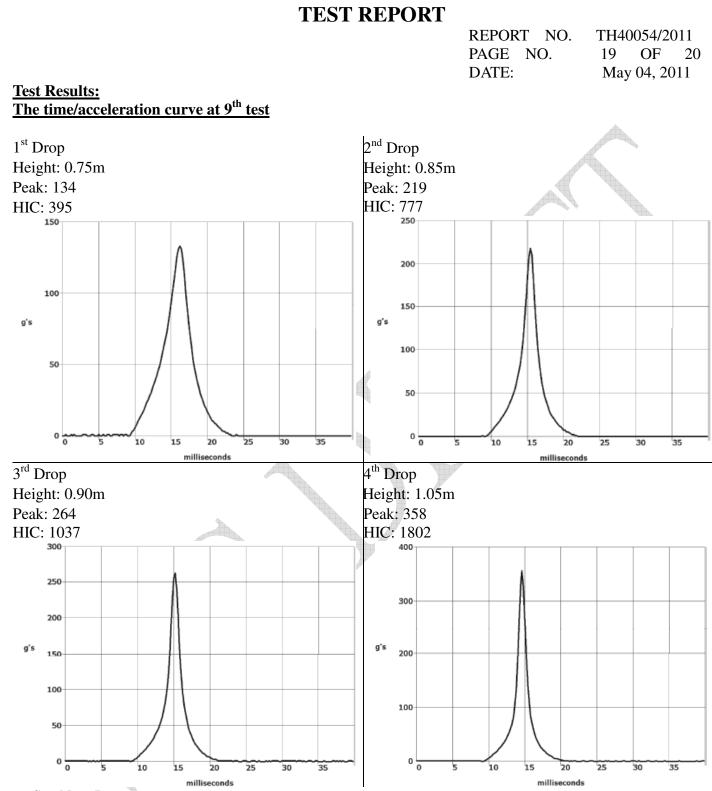
The curve of HIC vs. drop height at 8th test

- impact measurements 122
- н drop height critical fall height
- Нc
- --- See Next Page ----

REPORT	NO.	TH40	0054/20)11
PAGE N	О.	18	OF	20
DATE:		May	04, 20)11

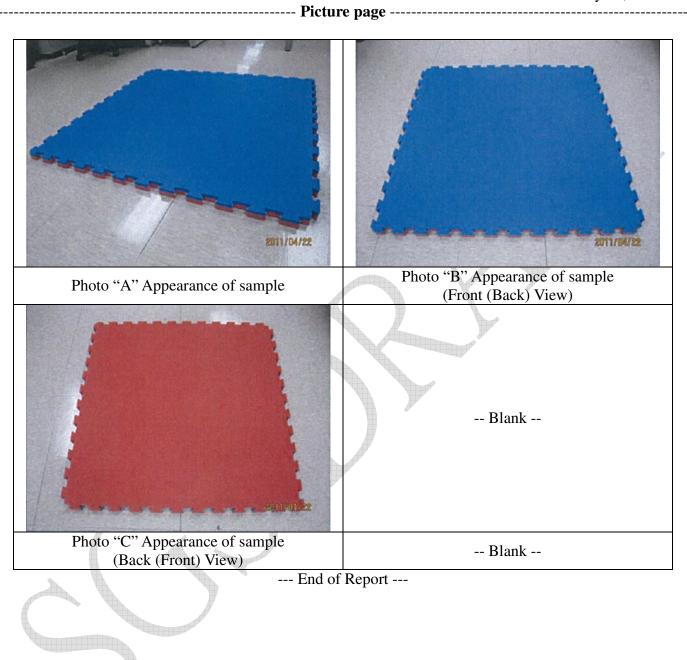

Test Results:

9 th test	Method of fixing: Take sample #5, #6, #7 attached them with double the edges of each sample, flat, rigid concrete floor. Position Description: At the cross-joint of s surface), #6(blue surface)	sample #5(red ace), #7(blue	-EXHNEL2E
Drop Test	Height (m)	HIC	Requirements
1 st	0.75	395	
2 nd	0.85	777	HIC ≤ 1000
3 rd	0.90	1037	$\int \prod_{i=1}^{n} \prod_{j=1}^{n} \sum_{i=1}^{n} \prod_{j=1}^{n} \prod_$
4 th	1.05	1802	
Environmental Condition		Temp.: 24°C/R.H.: 74%)
Sample Condition		Dry	


Determination:

The Maximum height at Position A that meets HIC ≤ 1000 is 0.8m. (The results were rounded up to first decimal.)

The curve of HIC vs. drop height at 9th test


- m impact measurements
- н drop height critical fall height
- Hc
- --- See Next Page ---

⁻⁻⁻ See Next Page ----

TEST REPORT

REPORT NO.	TH40054/2011
PAGE NO.	20 OF 20
DATE:	May 04, 2011

